GELOMBANG
Gelombang adalah getaran yang merambat. Di dalam perambatannya tidak diikuti oleh berpindahnya partikel-partikel perantaranya. Pada hakekatnya gelombang merupakan rambatan energi (energi getaran)
Macam gelombang
Menurut arah getarnya :
- gelombang transversal adalah gelombang yang arah getarnya tegak lurus terhadap arah rambatannya. Contoh: gelombang pada tali , gelombang permukaan air, gelobang cahaya, dll.
- gelombang longitudinal adalah gelombang yang arah getarnya sejajar atau berimpit dengan arah rambatannya. Contoh: gelombang bunyi dan gelombang pada pegas.
Menurut amplitudo dan fasenya :
- gelombang berjalan adalah gelombang yang amplitudo dan fasenya sama di setiap titik yang dilalui gelombng.
- gelombng diam (stasioner) adalah gelombang yang amplitudo dan fasenya berubah (tidak sama) di setiap titik yang dilalui gelombang.
Menurut medium perantaranya :
- gelombang mekanik adalah gelombang yang didalam perambatannya memerlukan medium perantara. Hampir semua gelombang merupakan gelombang mekanik.
- Gelombang elektromagnetik adalah gelombang yang didalam perambatannya tidak memerlukan medium perantara. Contoh : sinar gamma (γ), sinar X, sinar ultra violet, cahaya tampak, infra merah, gelombang radar, gelombang TV, gelombang radio.
Persamaan Umum Gelombang
Besaran-besaran dalam gelombang hampir sama dengan besaran-besaran yang dimiliki oleh getaran, antara lain, periode, frekuensi, kecepatan, fase, amplitudo. Ada satu besaran yang dimiliki oleh gelombang tetapi tidak dimiliki oleh getaran, yaitu panjang gelombang.
A
B
C
puncak gelombang
lembah gelombangUntuk memperjelas pengertian, perhatian keterangan dan gambar di bawah ini :
Periode gelombang (T) adalah waktu yang diperlukan oleh gelombang untuk menempuh satu panjang gelombang penuh.
Panjang gelombang (λ) adalah jarak yang ditempuh dalam waktu satu periode (jarak antara A dan C)
Frekuensi gelombang adalah banyaknya gelombang yang terjadi tiap satuan waktu.
Cepat rambat gelombang (v) adalah jarak yang ditempuh gelombang tiap satuan waktu.
v = λ.fDituliskan dengan persamaan : v = , dalam hal ini jika t diambil nilai ekstrem yaitu periode (T), maka S dapat digantikan dengan λ (panjang gelombang). Sehingga persamaan di atas dapat ditulis menjadi :
v = , dan karena f = , maka persamaan tersebut juga dapat ditulis sbb:
Keterangn : T = periode ( s )
f = frekuensi ( Hz )
λ = panjang gelombang ( m )
v = cepat rambat gelombang ( m/s )
Contoh Soal 1 :
Sebuah gelombang pada permukaan air dihasilkan dari suatu getaran yang frekuensinya 30 Hz. Jika jarak antara puncak dan lembah gelombang yang berturutan adalah 50 cm, hitunglah cepat rambat gelombang tersebut!
Penyelesaian :
Diketahui : f = 30 Hz , ½ λ = 50 cm à λ = 100 cm = 1 m
Ditanya : v = ..?
Jawab : v = λ.f = 1.30 = 30 m/s
Contoh Soal 2 :
Sebuah pemancar radio bekerja pada gelombang 1,5 m. Jika cepat rambat gelombang radio 3.108 m/s, pada frekuensi berapakah stasion radio tersebut bekerja!
Penyelesaian :
Diketahui : λ = 1,5 m, v = 3.108 m/s
Ditanya : f = ..?
Jawab : f = = = 2. 108 Hz = 200 MHz
1. Gelombang Berjalan
A
P
xDari gambar di samping, jika tali yang sangat panjang dibentangkan dan salah satu ujungnya digetarkan terus menerus, maka pada tali akan terjadi gelombang berjalan di sepanjang tali. Jika titik P berjarak x dari A dan ujung A merupakan sumber getar titik A telah bergetar selama t, maka titik P telah bergetar selama
, dimana v = kecepatan gelombang pad tali.
Dari keadaan di atas, maka kita dapat menentukan persamaan gelombang berjalan yaitu :
, karena , maka :
, karena Tv = λ, maka :
, dapat juga ditulis dengan persamaan :
atau
Faktor ( bilangan gelombang), dan persamaan di atas dapat juga ditulis sbb:
, dimana yp = simpangan getar di P ( m atau cm )
A = Amplitudo ( m atau cm )
ω = kecepatan sudut ( rad/ s )
t = waktu ( s )
k = bilangan gelombang ( /m )
x = jarak titik a terhadap titik P ( m atau cm )
λ (lambda) = panjang gelombang ( m atau cm )
Contoh Soal 3:
Gelombang berjalan mempunyai persmaan y = 0,2 sin (100π t – 2π x), dimana y dan x dalam meter dan t dalam sekon. Tentukan amplitudo, periode, frekuensi, panjang gelombang, dan cepat rambat gelombang tersebut !
Penyelesaian :
Diketahui : y = 0,2 sin (100π t – 2π x)
Ditanya : A = …?, T = …?, f = ..?, λ = ..?, v = ..?
Jawab : Kita dapat menjawab soal tersebut dengan cara membandingkan persamaan gelombang dalam soal dengan persamaan umum gelombang berjalan yaitu sbb :
y = 0,2 sin (100π t – 2π x) ………( 1 )
………….( 2 )
Dari persamaan (1) dan (2), maka dpat diambil kesimpulan bahwa :
Amplitudonya adalah : A = 0,2 m
Periode dapat ditentukan sbb: 100π = , sehingga T = s
Dari T = s, maka dapat dicari frekuensinya , yaitu f = Hz
Panjang gelombang ditentukan sbb: 2π x = , sehingga 1 m
Dari hasil f dan λ, maka cepat rambat gelombangnya adalah : v = λ.f = 50.1 = 50 m/s
Cepat rambat gelombang dapat juga ditetnukan dengan : m/s
2. Gelombang stasioner (diam)
Gelombang stasioner ini dapat terjadi oleh karena interferensi (penggabungan dua gelombang yaitu gelombang datang dan gelombang pantul.
Pantulan gelombang yang terjadi dapat berupa pantulan dengan ujung tetap dan dapat juga pantulan dengan ujung bebas. Jika pantulan itu terjadi pada ujung bebas, maka gelombang pantul merupakan kelanjutan dari gelombang datang (fasenya tetap), tetapi jika pantulan itu terjadi pada ujung tetap, maka gelombang pantul mengalami pembalikan fase (berbeda fase 180O) terhadap gelombang datang.
Bentuk gelombang stasioner dapat dilukiskan sebagai berikut:
Ujung pantul
Ujung pantul Untuk ujung pantul bebas: Untuk ujung pantul tetap:
Dari gambar di atas terdapat titik-titik yang memiliki amplitudo terbesar (maks) dan titik-titik yang memiliki amplitudo terkecil (nol).
Titik yang memiliki amplitudo terbesar disebut perut gelombang dan titik yang memiliki amplitudo terkecil disebut simpul gelombng.
Dari gambar di atas dapat disimpulkan juga bahwa pada pantulan ujung bebas, ujung pantul merupakan perut gelombang sedangkan pada pantulan ujung tetap, ujung pantul merupakan simpul gelombang.
Percobaan Melde
A
FJika tali yang panjangnya l, dibentangkan dan diberi beban lewat katrol seperti gambar di samping serta ujung A digetarkan terus menerus, maka pada tali akan terbentuk gelombang transversal yang stasioner (diam).
Percobaan ini pertama kali dilakukan oleh Melde untuk menentukan cepat rambat gelombang transversal pada tali.
Dari hasil percobaannya Melde menemukan kesimpulan bahwa cepat rambat gelombang pada tali adalah :
berbanding lurus dengan akar kwadrat tegangan tali (F)
berbanding terbalik dengan akar kwadrat massa per satuan panjang tali (μ)
Dari dua pernyataan di atas dapat dituliskan dengan persamaan :
, dimana F ( m.g) = gaya tegangan tali ( N )
μ = massa per satua panjang tali ( kg /m )
v = cepat rambat gelombang pada tali ( m/s )
karena , maka persamaan di atas dapat juga ditulis :
Contoh Soal 4:
Seutas tali yang panjangnya 5 m, massanya 4 gram ditegangkan dengan gaya 2 N dan salah satu ujungnya digetarkan dengan frekuensi 50 Hz. Hitunglah:
cepat rambat gelombang pada tali tersebut !
panjang gelombang pada tali tersebut !
Penyelesaian :
Diketahui : l = 5 m, m = 4 gr = 4.10-3kg, F = 2 N, f = 50 Hz
Ditanya : a. v = ..?
b. λ = ..?
Jawab : a. = m/s
b. m
Contoh Soal 5:
Seutas tali yang ditegangkan dengan gaya 5 N dan salah satu ujungnya digetarkan dengan frekuensi 40 Hz terbentuk gelombang dengan panjang gelombang 50 cm. Jika panjang tali 4 m, hitunglah:
cepat rambat gelombang pada tali tersebut !
massa tali tersebut !
Penyelesaian :
Diketahui : l = 4 m, F = 5 N, f = 40 Hz, λ = 50 cm = 0,5 m
Ditanya : a. v = ..?
b. m = ..?
Jawab : a. v = λ.f = 0,5.40 = 20 m/s
b. ----à m = 0,05 kg
Soal Latihan
1. Sebuah gelombang pada tali dihasilkan dari suatu getaran dengan periode 0,25 s. Jika jarak antara puncak dan lembah gelombang yang berturutan adalah 40 cm, hitunglah panjang gelombang dan cepat rambat gelombang tersebut!
2. Sebuah pemancar radio bekerja pada frekuensi 300 MHz. Jika cepat rambat gelombang radio 3.108 m/s, pada panjang gelombang berapakah stasion radio tersebut bekerja!
3. Gelombang berjalan mempunyai persmaan y = 0,2 sin 2π (100 t – 2x), dimana y dan x dalam meter dan t dalam sekon. Tentukan amplitudo, periode, frekuensi, panjang gelombang, dan cepat rambat gelombang tersebut !
4. Seutas tali yang panjangnya 2 m, massanya 40 gram ditegangkan dengan gaya 2 N dan salah satu ujungnya digetarkan. Ternyata pada tali terbentuk gelombang dengan panjang gelombang 50 cm. Hitunglah:
a. cepat rambat gelombang pada tali tersebut !
b. frekuensi sumber gelombang tersebut !
5. Seutas tali yang ditegangkan dengan gaya F dan salah satu ujungnya digetarkan dengan frekuensi 40 Hz terbentuk gelombang dengan cepat rambat gelombang 50 m/s. Jika panjang tali 4 m dan massanya 25 gram, hitunglah:
a. gaya tegangan pada tali tersebut !
b. panjang gelombang pada tali tersebut !
BUNYI
Gelombang bunyi merupakan gelombang mekanik yang bersifat longitudinal. Menurut frekuensinya gelombang bunyi dibedakan menjadi 3 yaitu :
a. infrasonic ( f ≤ 20 Hz )
b. audio (audience ) ( 20 Hz < f < 20.000 Hz )
c. ultrasonic ( f > 20.000 Hz )
Dari ketiga jemis gelombang bunyi tersebut, hanyalah bunyi audio saja yang dapat ditangkap oleh tilinga manusia.
Cepat rambat Bunyi
Bunyi dapat merambat padaa 3 jenis zat, yaitu zat padat, zat cair, dan gas. Cepat rambat bunyi tersebut dapat ditentukan dengan persamaan:
a. pada zat padat
E = modulus Young (N/m2)
ρ = massa jenis zat (kg/m3)
v = cepat rambat bunyi ( m/s )
b. pada zat cair
B = modulus Bulk (N/m2)
ρ = massa jenis zat (kg/m3)
v = cepat rambat bunyi ( m/s )
c. pada zat gas
γ = konstante Laplce
R = konstante umum gas ( R = 8,31 j/molK)
T = suhu mutlak gas ( K )
M = massa molekul gas ( kg/mol)
Contoh Soal 1:
Suatu bunyi yang frekuensinya f = 250 Hz merambat pada zat padat yang memiliki modulus Young E =108 N/m2 dan massa jenisnya ρ = 2500 kg/m3. Tentukan :
cepat rambat bunyi
panjang gelombang bunyi
Penyelesaian :
Diketahui : f = 250 Hz, E =1010 N/m2, ρ =5000 kg/m3
Ditanya : a. v = …?
b. λ = …?
Jawab : =200 m/s
2.Intensitas Bunyi
Energi bunyi biasa disebut dengan intensitas bunyi yang menyatakan energi bunyi tiap satuan waktu yang menembus tiap satuan luas suatu bidang secara tegak lurus (Intensitas bunyi adalah besarnya daya bunyi tiap satuan luas bidang). Dari definisi tersebut intensitas bunyi dapat dinyatakan dengan persamaan :
Dimana : P = daya bunyi ( watt )
A = luas bidang ( m2 )
I = intensitas bunyi (waat/m2)
Apabila sumber bunyi berupa sebuah titik dan bersifat isotropis (menyebar ke segala arah), maka bidang yang ditembus oleh daya bunyi merupakan bidang kulit bola ( A = 4πr2 ). Maka persamaan intensitas bunyi di atas dapat dituliskan sebagai berikut :
, dimana r = jarak sumber bunyi ke suatu titik.
Dari persaman di atas, maka dapat disimpulkan bahwa intensitas bunyi di sutu titik berbanding terbalik dengan kuarat jarak titik tersebut ke sumber bunyi.
Sehingga jika sebuah titik yang berjarak r1 dari sumber bunyi memiliki intensitas I1 dan titik yang berjarak r2 dari sumber bunyi memiliki intensitas I2, maka akan berlaku persamaan:
, jadi
Dimana : I1 = intensitas bunyi di titik 1 (w/m2)
I2 = intensitas bunyi di titik 2 (w/m2)
Contoh Soal 2 :
Sebuah sumber bunyi mempunyai daya 200π watt. Tentukanlah intensitas bunyi di suatu titik yang berjarak 10 m dari sumber bunyi tersebut !
Penyelesaian :
Diketahui : P = 200π watt, r = 10 m
Ditanya : I = …?
Jawab : w/m2
Contoh Soal 3 :
Intensitas bunyi di suatu tempat yang berjarak 9 m dari sumber bunyi adalah 8.10-5 w/m2. Tentukanlah intensitas bunyi di suatu tempat yang berjarak 18 m dari sumber bunyi tersebut !
Penyelesaian :
Diketahui : r1 = 10 m, I1 = 8.10-5 w/m2
Ditanya : I2 = …?, apabila r2 = 18 m
Jawab :
w/m2
3.Taraf Intensitas Bunyi ( I )
Taraf Intensitas bunyi didefinisikan sebagai nilai logaritma dari perbandingan antara intensitas suatu bunyi dengan intensitas standar ( intensitas ambang pendengaran ).
Besarnya Taraf Intensitas bunyi dinyatakan dengn persamaan :
, dimana : TI = Taraf intensitas bunyi (dB)
I = intensitas bunyi ( w/m2 )
I0 = intensitas ambang pendengaran.
I0 = 10-12 w/m2
Ambang pendengaran didefinisikan sebagai inensitas bunyi terkecil yang masih dapat didengar oleh telinga normal. (I0 = 10-12 w/m2 )
Ambang peasaan didefinisikan sebagai inensitas bunyi terbesar yang masih dapat didengar oleh telinga normal tanpa rsa sakit (I = 1 w/m2 )
Contoh Soal 4 :
Intensitas bunyi di suatu tempat adalah 10-5 w/m2. Tentukanlah Taraf intensitas bunyi di tempat tersebut, jika diketahui intensitas ambang pendengaran I0= 10-12 w/m2 !
Penyelesaian :
Diketahui : I = 8.10-5 w/m2 I0= 10-12 w/m2
Ditanya : TI = …?
= 10 log ( ) = 10.log 10-7 = 10.7 = 70 dB
Contoh Soal 5 :
Taraf intensitas bunyi ssebuah mesin adalah 50 dB. Tentukanlah Taraf intensitas bunyi dari sepuluh buah mesin sejenis jika dibunyikan bersama-sama. Diketahui intensitas ambang pendengaran I0= 10-12 w/m2 !
Penyelesaian :
Diketahui : TI1 = 50 dB I0= 10-12 w/m2
Ditanya : TI10 = …?
Jawab : Dicari terlebih dahulu intensitas sebuah mesin.
50 = 10 log( )
5 = log
log 105 = log
105 =
I1 = 105.10-12
Kemudian dicari I10
I10 = 10. I1 = 10.10-7 = 10-6 w/m2
TI10 = 10 log = 10 log 10-6
TI10 = 10.6 = 60 dB
Soal tersebut di atas secara singkat dapat diselesaikan dengan persamaan sbb:
TIn = TI1 + 10 log n
Lihat penyelesaiannya !
TIn = TI1 + 10 log n
= 50 + 10.log 10
= 50 + 10 .1 = 50 + 10 = 60 dB
Latihan Soal.
1. Suatu bunyi yang panjang gelombangnya λ = 2,5 m merambat pada zat padat yang memiliki modulus Young E =1010 N/m2 dan massa jenisnya ρ = 1000 kg/m3. Tentukan :
a. cepat rambat bunyi
b. panjang gelombang bunyi
2. Sebuah sumber bunyi mempunyai daya 200π watt. Tentukanlah jarak suatu tempat dari sumber bunyi itu agar ntensitas bunyi tersebut !
3. Intensitas bunyi di suatu tempat yang berjarak 9 m dari sumber bunyi adalah 8.10-5 w/m2. Tentukanlah intensitas bunyi di suatu tempat yang berjarak 18 m dari sumber bunyi tersebut !
4. Intensitas bunyi di suatu tempat adalah 10-5 w/m2. Tentukanlah Taraf intensitas bunyi di tempat tersebut, jika diketahui intensitas ambang pendengaran I0= 10-12 w/m2 !
5. Taraf intensitas bunyi ssebuah mesin adalah 50 dB. Tentukanlah Taraf intensitas bunyi dari seratus buah mesin sejenis jika dibunyikan bersama-sama. Diketahui intensitas ambang pendengaran I0= 10-12 w/m2 !
Jumat, 14 Maret 2008
Minggu, 09 Maret 2008
IMPULS DAN MOMENTUM
KEGIATAN BELAJAR I
IMPULS DAN MOMENTUM
Kompetensi Dasar : Menerapkan konsep impuls dan momentum
Sub Kompetensi : Menerapkan hubungan antara impuls dan momentum
Alokasi Waktu : 12 Jam @ 45 menit
Dilaksanakan : Pada pertemuan ke-1 s.d. 6
Kompetensi yang akan dicapai:
1. Siswa dapat mendefinisikan impuls dan momentum
2. Siswa dapat menghitung momentum dari suatu benda
3. Siswa dapat menghitung impuls yang ditimbulkan oleh suatu gaya.
4. Siswa dapat menetukan hubungan antara impuls dan momentum serta menerapkannya pada penyelesaian soal latihan.
5. Siswa dapat menrapkan huukm kekekalan momentum dalam penyelesaian soal.
6. Siswa dapat menghitung koefisien restitusi dan menerapkannya pada penyelesaian soal-soal tentang tumbukan.
URAIAN MATERI
A. Pengertian Momentum.
Momentum suatu benda adalah hasil kali massa dan kecepatan.
Dirumuskan dengan persamaan:
p = m.v m = massa ( kg)
v = kecepatan ( m/s )
p = momentum ( kg.m/s )
Momentum juga disebut jumlah gerak.
Momentum adalah besaran vector. Momentum 45 kgm/s ke utara berbeda dengan momentum 45 kgm/s ke selatan, walaupun nilai keduanya sama. Penjumlahan momentum mengikuti aturan penjumlahan vector. Misal momentum p1 dan p2 membentuk sudut α , maka resultan/ jumlah kedua momentum tersebut dapayt dituliskan dengan persamaan :
p1
p
p2
α –––––––––––––––––––––––––––––––
p = √ p12 + p22 + 2 p1 p2 cos α
B. Pengetian Impuls.
Impuls adalah hasil kali antara gaya yang bekerja dan selang waktu gaya itu bekerja. Impuls juga sering disebut pukulan.
Dirumuskan dengan persamaan :
I = F. ∆t F = gaya ( N )
∆t = selang waktu ( s )
I = Impuls ( Ns )
Impuls merupakan besaran vector.
C. Hubungan antara imupls dan momentum.
Sebuah benda massa m mula-mula bergerak dengan kecepatan v1, kemudian dipukul dengan gaya F hingga kecepatannya menjadi v2, seperti gambar di bawah, maka besarnya impuls yang bekerja pada benda tersebut adalah:
∆t
v1
v2
F
m m
Sesuai dengan hukum II Newton:
I = F. ∆t , karena
v2 – v1
F = m.a dan a = –––––––––––, maka :
∆t
v2 – v1
I = m.–––––– . ∆t
∆t
I = m (v2 – v1 ) –––––> I = m v2 – m v1 atau I = p2 – p1
Dapat juga dituls I = ∆p ( Impuls merupakan perubahan momentum benda )
Contoh Soal
Sebuah benda massa 5 kg bergerak dengan kecepatan 10m/s. Hitunglah momentum yang dimiliki benda!
Penyelesian : Diketahui : m = 5 kg; v = 10 m/s
Ditanya : p = …?
Jaab : p = m.v = 5.10 = 50 kgm/s
Sebuah benda mula-mula bergerak ke utara dengan kecepatan 6 m/s, kemudian berbelok ke barat dengan kecepatan 8 m/s. Apabila massa benda 50 kg, berpakah momentum total yang dimiliki benda ?
Penyelesaian : Diketahui : v1 = 6 m/s; v2 = 8 m/s; m = 5 kg
Ditanya : p = …?
Jawab : p1 = m. v1 = 50.6 = 300 kgm/s
p1
p
P2 P2 = m. v2 = 50.8 = 400 kgm/s
––––––– –––––––––
p = √ p12 + p22 = √ 3002 + 4002 = 500 kgm/s
Sebuah gaya 25 N bekerja pada sebuah benda dalam selang waktu 0,2 sekon. Hitunglah impuls yang dikerjakan gaya tersebut pada benda
Penyelesaian : Diketahui : F = 25 N; ∆t = 0,2 s
Ditanya : I = …?
Jawab : I = F. ∆t = 25. 0,2 = 5 Ns
Sebuah bola massanya 50 gram dilempar dengan kecepatan 10 m/s, kemudian dipukul dengan gaya F hingga kecepatannya 20 m/s berlawanan arah dengan kecepatan semula.
Hitunglah impuls yang dikerjakan oleh gaya tersebut!
Jika besarnya gaya F = 150 N, berapa lama pemukul menyentuh bola?
Penyelesaian : Diketahui : m = 50 gram = 50.10–3 kg; v1 = – 10 m/s;
v2 = 20 m/s
Ditanya : a. I = …?
b. Jika F = 150 N –––> ∆t = …?
Jawab : a. I = m.( v2 – v1 ) = 50.10–3 [20 – (-10)]
= 50.10–3. 30 = 1500.10–3 = 1,5 Ns
b. I = F. ∆t ––––> 1,5 = 150. ∆t –––> ∆t = 0,01 s
D. Hukum Kekekalan Momentum dan Tumbukan.
“Jumlah momentum suatu sistem sebelum dan sesudah tumbukan akan selalu tetap”
Pernyataan di atas disebut hukum kekekalan momentum dan ditulis dengan persamaan:
m1.v1 + m2.v2 = m1.v1’ + m2.v2’ m1 = massa benda 1
m2 = massa benda 2
v1 = kecepatan benda 1 sebelum tumbukan
v2 = kecepatan benda 2 sebelum tumbukan
v1’ = kecepatan benda 1 sesudah tumbukan
v2’ = kecepatan benda 2 sesudah tumbukan
Jenis-jenis Tumbukan
a. Tumbukan lenting sempurna (elastis sempurna)
Tumbukan lenting sempurna yaitu tumbukan dimana tidak ada energi kinetik yang hilang dari sistem. Dalam tumbukan ini berlaku hukum kekekalan momentum dan hukum kekekalan energi kinetik.
Dalam hal ini berlaku persamaan :
m1.v1 + m2.v2 = m1.v1’ + m2.v2’ ……………………….(1) dan
½ m1.v12 + ½ m2.v22 = ½ m1.(v1’)2 + ½ m2.(v2’)2 ……..(2)
Dengan membagi persamaan (2) dengan persamaan (1), maka akan didapatkan
persamaan : v1 + v1’ = v2 + v2’
b. Tumbukan tidak lenting sama sekali
Pada tumbukan tidak lenting sama sekali, sesudah tumbukan kedua benda bergabung menjadi satu dan bergerak bersama-sama. Dengan demikian, maka kecepatan kedua benda setelah bertumbukan adalah sama.: v1’ = v2’ = v’
Pada tumbukan ini persamaan hukum kekekalan momentum dapat ditulis sbb:
m1.v1 + m2.v2 = m1.v1’ + m2.v2’, karena v1’ = v2’ = v’, maka
m1.v1 + m2.v2 = m1.v’ + m2.v’
atau dapat juga ditulis :
m1.v1 + m2.v2 = (m1 + m2).v’
v’ = kecepatan benda setelah tumbukan ( m/s )
Contoh Soal
1. Seorang penembak memegang sebuah senapan 3 kg dengan bebas sehingga membiarkan senapan bergerak secara bebas ketika menembakkan sebutir peluru bermassa 5 gram. Peluru itu keluar dari moncong senapan dengan kecepatan horisontal 300 m/s. Berapa kecepatan hentakan senapan ketika peluru ditembakkan?
Penyelesaian :
Diketahui : Benda 1 (senapan) m1 = 3 kg; v1 = 0
Benda 2 (peluru ) m2 = 5 g ; v2 = 0 ; v2’ = 300 m/s.
Ditanya : v1’ = …?
Jawab :Gunakanlah hukum kekekalan momentum!
m1.v1 + m2.v2 = m1.v1’ + m2.v2’
3.0 + 5.10–3.0 = 3. v1’ + 5.10–3. 300
0 = 3. v1’ + 1,5
–3. v1’ = 1,5 –––––––––> v1’ = 1,5/–3 = –0,5 m/s
2. Dua nelayan sedang berada di perahu yang bergerak dengan kecepatan 2 m/s. Massa perahu 200 kg dan massa tiap nelayan 50 kg. Berapa kecepatan perah sesaat sesudah :
a. Seorang nelayan terjatuh
b. Seorang nelayan melompat dari perahu dengan kecepatan 4 m/s searah dengan gerak perahu
c. Seorang nelayan melompat dari perahu dengan kecepatan 4 m/s berlawanan arah dengan gerak perahu
Penyelesaian :
Diketahui : m1 = massa perahu + massa satu orang
= 200 + 50 = 250 kg
m2 = massa satu orang = 50 kg
v1 = v2 = v = 2 m/s;
Ditanya : a. v1’ = …? Jika v2’ = 0
b. v1’ = …? Jika v2’ = 4 m/s
c. v1’ = …? Jika v2’ = – 4 m/s
Jawab : Gunakanlah hokum kekekalan momentum
a. m1.v1 + m2.v2 = m1.v1’ + m2.v2’
250.2 + 50.2 = 250. v1’ + 50. 0
500 + 100 = 250. v1’ + 0
250. v1’ = 600 –––––––––> v1’ = 600/250 = 2,4 m/s
b. m1.v1 + m2.v2 = m1.v1’ + m2.v2’
250.2 + 50.2 = 250. v1’ + 50. 4
500 + 100 = 250. v1’ + 200
250. v1’ = 400 –––––––––> v1’ = 400/250 = 1,6 m/s
c. m1.v1 + m2.v2 = m1.v1’ + m2.v2’
250.2 + 50.2 = 250. v1’ + 50.(– 4)
500 + 100 = 250. v1’ – 200
250. v1’ = 800 –––––––––> v1’ = 800/250 = 3,2 m/s
3. Sebuah bola dengan massa 40 gram bergerak ke kanan dengan kelajuan 30 m/s menumbuk bola lain yang massanya 80 gram yang mula-mulla diam. Jika tumbukan lenting sempurna, berapakah kecepatan masing-masing bola setelah tumbukan?
Penyelesaian :
Diketahui : m1 = 40 gram; m2 = 80 gram;
v1 = 30 m/s; v2 = 0
Ditanya : v1’ = …? dan v2’ = …? (tumbukan lenting sempurna)
Jawab : Gunakanlah persamaan : v1 + v1’ = v2 + v2’
30 + v1’ = 0 + v2’ –––> v2’ = 30 + v1’
Hukum kekekalan momentum:
m1.v1 + m2.v2 = m1.v1’ + m2.v2’
40.30 + 80.0 = 40. v1’ + 80.( 30 + v1’)
1200 + 0 = 40. v1’ + 2400 + 80.v1’
1200 – 2400 = 120. v1’
–1200 = 120. v1’ ––––––> v1’ = –1200/120 = –10 m/s
Dari hasil v1’ = –10 m/s, maka v2’ = 30 + (–10) ––––> v2’ = 20 m/s
Tanda (–) menandakan bahwa arah kecepatan berlawanan arah dengan arah semula
4. Dua buah bola masing-masing massanya 2 kg dan 4 kg bergerak saling mendekati dengan kecepatan masing-masing 4 m/s dan 0,5 m/s, hingga saling bertumbukan. JIka tunbukan tidak lenting sama sekali, hitunglah kecepatan kedua bola setelah bertumbukan!
Penyelesaian :
Diketahui : m1 = 2 kg; m2 = 4 kg;
v1 = 4 m/s; v2 = –0,5 m/s
Ditanya : v1’ = …? dan v2’ = …? (tumbukan tidak lenting sama sekali)
Jawab : Gunakanlah persamaan : v1’ = v2’ = v’
Hukum kekekalan momentum:
m1.v1 + m2.v2 = m1.v1’ + m2.v2’
2. 4 + 4.(–0,5) = 2. v’ + 4.v’
8 – 2 = 6. v’ ––––––> 6. v’ = 6 ––––> v’ =6/6 = 1 m/s
Jadi kecepatan kedua benda setelah tumbukan adalah 1 m/s.
Soal Latihan:
Hitung besarnya momentum sebuak truk yang massanya 2 ton yang bergerak dengan kecepatan 20 m/s.
Sebuah benda bergeak dengan kecepatan 72 km/jam. Momentum yang dimiliki benda tersebut adalah 2.105 kgm/s. Hitunglah massa benda!
ebuah bneda massa 4kg dijatuhkan tanpa kecepatan awal dari ketinggian 45 m. Berapa momentum bneda saat menumbuk tanah?
Sebuah benda massa 3 kg diberi gaya kontan 12 N sehingga kecepatannya betambah dari 10 m/s menjadi 18 m/s. Hitunglah :
Impuls yang bekerja pada benda
Lama gaya itu bereaksi/ bekerja
Sebuah benda massa 4 kg bergerak dengan kecepatan 20 m/s dihentikan oleh suatu gaya konstan 50 N dalam selang waktu ∆t. Hiutnglah :
Impuls gaya
Selang waktu gaya bekerja (∆t.)
Sebuah peluru bermassa 20 gram ditembakkan horizontal dengan kecepatan 250 m/s. Berapa kecepatan senapan endorong bahu penembak?
Sebuah bus massa 10 ton bergerak dengan kelajuan 4 m/s, menabrak sebuah truk massa 20 ton yang seang bergerak dengan arah berlawanan dan sesudah bertabrakan keduanya berhenti. Berapa kelajuan truk itu sesaat sebelum bertabrakan?
Sebuah balok massa 2 kg meluncur dengan kecepatan 10 m/s spanjang lantai licin danmenumbuk balok lain yang mula-mula diam. Jika tumbukan lenting sempurna, hitunglah kecepatan masing-masing balok setelah tumbukan!
Sebuah kereta dinamik massa 2 kg begerak ke kanan dengan kecepatan 4 m/s menumbuk lenting sempurna kereta dinamik lain massa 4 kg yang sedang bergerak ke kiri dengan kecepatan 1 m/s. Hitung kecepatan masing-masing keret sesudah bertumbukan!
Dua benda massanya sama yaitu 2 kg, bergerak berlawanan arah dengan kecepatan masing-masing 10 m/s dan 5 m/s. Sesudah tumbukan kedua benda menyatu. Tentukan :
Kecepatan kedua benda sesudah tumbukan.
Energy kinetic yang hilang selama proses tumbukan.
IMPULS DAN MOMENTUM
Kompetensi Dasar : Menerapkan konsep impuls dan momentum
Sub Kompetensi : Menerapkan hubungan antara impuls dan momentum
Alokasi Waktu : 12 Jam @ 45 menit
Dilaksanakan : Pada pertemuan ke-1 s.d. 6
Kompetensi yang akan dicapai:
1. Siswa dapat mendefinisikan impuls dan momentum
2. Siswa dapat menghitung momentum dari suatu benda
3. Siswa dapat menghitung impuls yang ditimbulkan oleh suatu gaya.
4. Siswa dapat menetukan hubungan antara impuls dan momentum serta menerapkannya pada penyelesaian soal latihan.
5. Siswa dapat menrapkan huukm kekekalan momentum dalam penyelesaian soal.
6. Siswa dapat menghitung koefisien restitusi dan menerapkannya pada penyelesaian soal-soal tentang tumbukan.
URAIAN MATERI
A. Pengertian Momentum.
Momentum suatu benda adalah hasil kali massa dan kecepatan.
Dirumuskan dengan persamaan:
p = m.v m = massa ( kg)
v = kecepatan ( m/s )
p = momentum ( kg.m/s )
Momentum juga disebut jumlah gerak.
Momentum adalah besaran vector. Momentum 45 kgm/s ke utara berbeda dengan momentum 45 kgm/s ke selatan, walaupun nilai keduanya sama. Penjumlahan momentum mengikuti aturan penjumlahan vector. Misal momentum p1 dan p2 membentuk sudut α , maka resultan/ jumlah kedua momentum tersebut dapayt dituliskan dengan persamaan :
p1
p
p2
α –––––––––––––––––––––––––––––––
p = √ p12 + p22 + 2 p1 p2 cos α
B. Pengetian Impuls.
Impuls adalah hasil kali antara gaya yang bekerja dan selang waktu gaya itu bekerja. Impuls juga sering disebut pukulan.
Dirumuskan dengan persamaan :
I = F. ∆t F = gaya ( N )
∆t = selang waktu ( s )
I = Impuls ( Ns )
Impuls merupakan besaran vector.
C. Hubungan antara imupls dan momentum.
Sebuah benda massa m mula-mula bergerak dengan kecepatan v1, kemudian dipukul dengan gaya F hingga kecepatannya menjadi v2, seperti gambar di bawah, maka besarnya impuls yang bekerja pada benda tersebut adalah:
∆t
v1
v2
F
m m
Sesuai dengan hukum II Newton:
I = F. ∆t , karena
v2 – v1
F = m.a dan a = –––––––––––, maka :
∆t
v2 – v1
I = m.–––––– . ∆t
∆t
I = m (v2 – v1 ) –––––> I = m v2 – m v1 atau I = p2 – p1
Dapat juga dituls I = ∆p ( Impuls merupakan perubahan momentum benda )
Contoh Soal
Sebuah benda massa 5 kg bergerak dengan kecepatan 10m/s. Hitunglah momentum yang dimiliki benda!
Penyelesian : Diketahui : m = 5 kg; v = 10 m/s
Ditanya : p = …?
Jaab : p = m.v = 5.10 = 50 kgm/s
Sebuah benda mula-mula bergerak ke utara dengan kecepatan 6 m/s, kemudian berbelok ke barat dengan kecepatan 8 m/s. Apabila massa benda 50 kg, berpakah momentum total yang dimiliki benda ?
Penyelesaian : Diketahui : v1 = 6 m/s; v2 = 8 m/s; m = 5 kg
Ditanya : p = …?
Jawab : p1 = m. v1 = 50.6 = 300 kgm/s
p1
p
P2 P2 = m. v2 = 50.8 = 400 kgm/s
––––––– –––––––––
p = √ p12 + p22 = √ 3002 + 4002 = 500 kgm/s
Sebuah gaya 25 N bekerja pada sebuah benda dalam selang waktu 0,2 sekon. Hitunglah impuls yang dikerjakan gaya tersebut pada benda
Penyelesaian : Diketahui : F = 25 N; ∆t = 0,2 s
Ditanya : I = …?
Jawab : I = F. ∆t = 25. 0,2 = 5 Ns
Sebuah bola massanya 50 gram dilempar dengan kecepatan 10 m/s, kemudian dipukul dengan gaya F hingga kecepatannya 20 m/s berlawanan arah dengan kecepatan semula.
Hitunglah impuls yang dikerjakan oleh gaya tersebut!
Jika besarnya gaya F = 150 N, berapa lama pemukul menyentuh bola?
Penyelesaian : Diketahui : m = 50 gram = 50.10–3 kg; v1 = – 10 m/s;
v2 = 20 m/s
Ditanya : a. I = …?
b. Jika F = 150 N –––> ∆t = …?
Jawab : a. I = m.( v2 – v1 ) = 50.10–3 [20 – (-10)]
= 50.10–3. 30 = 1500.10–3 = 1,5 Ns
b. I = F. ∆t ––––> 1,5 = 150. ∆t –––> ∆t = 0,01 s
D. Hukum Kekekalan Momentum dan Tumbukan.
“Jumlah momentum suatu sistem sebelum dan sesudah tumbukan akan selalu tetap”
Pernyataan di atas disebut hukum kekekalan momentum dan ditulis dengan persamaan:
m1.v1 + m2.v2 = m1.v1’ + m2.v2’ m1 = massa benda 1
m2 = massa benda 2
v1 = kecepatan benda 1 sebelum tumbukan
v2 = kecepatan benda 2 sebelum tumbukan
v1’ = kecepatan benda 1 sesudah tumbukan
v2’ = kecepatan benda 2 sesudah tumbukan
Jenis-jenis Tumbukan
a. Tumbukan lenting sempurna (elastis sempurna)
Tumbukan lenting sempurna yaitu tumbukan dimana tidak ada energi kinetik yang hilang dari sistem. Dalam tumbukan ini berlaku hukum kekekalan momentum dan hukum kekekalan energi kinetik.
Dalam hal ini berlaku persamaan :
m1.v1 + m2.v2 = m1.v1’ + m2.v2’ ……………………….(1) dan
½ m1.v12 + ½ m2.v22 = ½ m1.(v1’)2 + ½ m2.(v2’)2 ……..(2)
Dengan membagi persamaan (2) dengan persamaan (1), maka akan didapatkan
persamaan : v1 + v1’ = v2 + v2’
b. Tumbukan tidak lenting sama sekali
Pada tumbukan tidak lenting sama sekali, sesudah tumbukan kedua benda bergabung menjadi satu dan bergerak bersama-sama. Dengan demikian, maka kecepatan kedua benda setelah bertumbukan adalah sama.: v1’ = v2’ = v’
Pada tumbukan ini persamaan hukum kekekalan momentum dapat ditulis sbb:
m1.v1 + m2.v2 = m1.v1’ + m2.v2’, karena v1’ = v2’ = v’, maka
m1.v1 + m2.v2 = m1.v’ + m2.v’
atau dapat juga ditulis :
m1.v1 + m2.v2 = (m1 + m2).v’
v’ = kecepatan benda setelah tumbukan ( m/s )
Contoh Soal
1. Seorang penembak memegang sebuah senapan 3 kg dengan bebas sehingga membiarkan senapan bergerak secara bebas ketika menembakkan sebutir peluru bermassa 5 gram. Peluru itu keluar dari moncong senapan dengan kecepatan horisontal 300 m/s. Berapa kecepatan hentakan senapan ketika peluru ditembakkan?
Penyelesaian :
Diketahui : Benda 1 (senapan) m1 = 3 kg; v1 = 0
Benda 2 (peluru ) m2 = 5 g ; v2 = 0 ; v2’ = 300 m/s.
Ditanya : v1’ = …?
Jawab :Gunakanlah hukum kekekalan momentum!
m1.v1 + m2.v2 = m1.v1’ + m2.v2’
3.0 + 5.10–3.0 = 3. v1’ + 5.10–3. 300
0 = 3. v1’ + 1,5
–3. v1’ = 1,5 –––––––––> v1’ = 1,5/–3 = –0,5 m/s
2. Dua nelayan sedang berada di perahu yang bergerak dengan kecepatan 2 m/s. Massa perahu 200 kg dan massa tiap nelayan 50 kg. Berapa kecepatan perah sesaat sesudah :
a. Seorang nelayan terjatuh
b. Seorang nelayan melompat dari perahu dengan kecepatan 4 m/s searah dengan gerak perahu
c. Seorang nelayan melompat dari perahu dengan kecepatan 4 m/s berlawanan arah dengan gerak perahu
Penyelesaian :
Diketahui : m1 = massa perahu + massa satu orang
= 200 + 50 = 250 kg
m2 = massa satu orang = 50 kg
v1 = v2 = v = 2 m/s;
Ditanya : a. v1’ = …? Jika v2’ = 0
b. v1’ = …? Jika v2’ = 4 m/s
c. v1’ = …? Jika v2’ = – 4 m/s
Jawab : Gunakanlah hokum kekekalan momentum
a. m1.v1 + m2.v2 = m1.v1’ + m2.v2’
250.2 + 50.2 = 250. v1’ + 50. 0
500 + 100 = 250. v1’ + 0
250. v1’ = 600 –––––––––> v1’ = 600/250 = 2,4 m/s
b. m1.v1 + m2.v2 = m1.v1’ + m2.v2’
250.2 + 50.2 = 250. v1’ + 50. 4
500 + 100 = 250. v1’ + 200
250. v1’ = 400 –––––––––> v1’ = 400/250 = 1,6 m/s
c. m1.v1 + m2.v2 = m1.v1’ + m2.v2’
250.2 + 50.2 = 250. v1’ + 50.(– 4)
500 + 100 = 250. v1’ – 200
250. v1’ = 800 –––––––––> v1’ = 800/250 = 3,2 m/s
3. Sebuah bola dengan massa 40 gram bergerak ke kanan dengan kelajuan 30 m/s menumbuk bola lain yang massanya 80 gram yang mula-mulla diam. Jika tumbukan lenting sempurna, berapakah kecepatan masing-masing bola setelah tumbukan?
Penyelesaian :
Diketahui : m1 = 40 gram; m2 = 80 gram;
v1 = 30 m/s; v2 = 0
Ditanya : v1’ = …? dan v2’ = …? (tumbukan lenting sempurna)
Jawab : Gunakanlah persamaan : v1 + v1’ = v2 + v2’
30 + v1’ = 0 + v2’ –––> v2’ = 30 + v1’
Hukum kekekalan momentum:
m1.v1 + m2.v2 = m1.v1’ + m2.v2’
40.30 + 80.0 = 40. v1’ + 80.( 30 + v1’)
1200 + 0 = 40. v1’ + 2400 + 80.v1’
1200 – 2400 = 120. v1’
–1200 = 120. v1’ ––––––> v1’ = –1200/120 = –10 m/s
Dari hasil v1’ = –10 m/s, maka v2’ = 30 + (–10) ––––> v2’ = 20 m/s
Tanda (–) menandakan bahwa arah kecepatan berlawanan arah dengan arah semula
4. Dua buah bola masing-masing massanya 2 kg dan 4 kg bergerak saling mendekati dengan kecepatan masing-masing 4 m/s dan 0,5 m/s, hingga saling bertumbukan. JIka tunbukan tidak lenting sama sekali, hitunglah kecepatan kedua bola setelah bertumbukan!
Penyelesaian :
Diketahui : m1 = 2 kg; m2 = 4 kg;
v1 = 4 m/s; v2 = –0,5 m/s
Ditanya : v1’ = …? dan v2’ = …? (tumbukan tidak lenting sama sekali)
Jawab : Gunakanlah persamaan : v1’ = v2’ = v’
Hukum kekekalan momentum:
m1.v1 + m2.v2 = m1.v1’ + m2.v2’
2. 4 + 4.(–0,5) = 2. v’ + 4.v’
8 – 2 = 6. v’ ––––––> 6. v’ = 6 ––––> v’ =6/6 = 1 m/s
Jadi kecepatan kedua benda setelah tumbukan adalah 1 m/s.
Soal Latihan:
Hitung besarnya momentum sebuak truk yang massanya 2 ton yang bergerak dengan kecepatan 20 m/s.
Sebuah benda bergeak dengan kecepatan 72 km/jam. Momentum yang dimiliki benda tersebut adalah 2.105 kgm/s. Hitunglah massa benda!
ebuah bneda massa 4kg dijatuhkan tanpa kecepatan awal dari ketinggian 45 m. Berapa momentum bneda saat menumbuk tanah?
Sebuah benda massa 3 kg diberi gaya kontan 12 N sehingga kecepatannya betambah dari 10 m/s menjadi 18 m/s. Hitunglah :
Impuls yang bekerja pada benda
Lama gaya itu bereaksi/ bekerja
Sebuah benda massa 4 kg bergerak dengan kecepatan 20 m/s dihentikan oleh suatu gaya konstan 50 N dalam selang waktu ∆t. Hiutnglah :
Impuls gaya
Selang waktu gaya bekerja (∆t.)
Sebuah peluru bermassa 20 gram ditembakkan horizontal dengan kecepatan 250 m/s. Berapa kecepatan senapan endorong bahu penembak?
Sebuah bus massa 10 ton bergerak dengan kelajuan 4 m/s, menabrak sebuah truk massa 20 ton yang seang bergerak dengan arah berlawanan dan sesudah bertabrakan keduanya berhenti. Berapa kelajuan truk itu sesaat sebelum bertabrakan?
Sebuah balok massa 2 kg meluncur dengan kecepatan 10 m/s spanjang lantai licin danmenumbuk balok lain yang mula-mula diam. Jika tumbukan lenting sempurna, hitunglah kecepatan masing-masing balok setelah tumbukan!
Sebuah kereta dinamik massa 2 kg begerak ke kanan dengan kecepatan 4 m/s menumbuk lenting sempurna kereta dinamik lain massa 4 kg yang sedang bergerak ke kiri dengan kecepatan 1 m/s. Hitung kecepatan masing-masing keret sesudah bertumbukan!
Dua benda massanya sama yaitu 2 kg, bergerak berlawanan arah dengan kecepatan masing-masing 10 m/s dan 5 m/s. Sesudah tumbukan kedua benda menyatu. Tentukan :
Kecepatan kedua benda sesudah tumbukan.
Energy kinetic yang hilang selama proses tumbukan.
Langganan:
Postingan (Atom)